Основные математические формулы

Эти формулы часто используются при разработке в системе 1С, поэтому, чтобы все время их не вспоминать решил выложить их в отлдельной статье.

1. НДС

1.1. Зависимости

Основная формула:

СуммаБезНДС + НДС = СуммаСНДС (1.1)

где:
НДС = СуммаБезНДС * СтавкаНДС (1.2)

заменим НДС в формуде 1.1, выражением полученным в формуле 1.2:
СуммаБезНДС + СуммаБезНДС * СтавкаНДС = СуммаСНДС (1.3)

вынесим за скобки СуммаБезНДС:
СуммаБезНДС * (1 + СтавкаНДС) = СуммаСНДС (1.4)

получим СуммаБезНДС:
СуммаБезНДС = СуммаСНДС / (1 + СтавкаНДС) (1.5)

заменим в формуле (1.2) СуммаБезНДС на значение, полученное в 1.5:
НДС = СуммаСНДС / (1 + СтавкаНДС) * СтавкаНДС (1.6)

сократим:
НДС = СтавкаНДС * СуммаСНДС / (1 + СтавкаНДС) (1.7)

Вынесем СтавкаНДС с нижней дроби, разделив ее на СавкаНДС:
НДС = СуммаСНДС / ((1 / СтавкаНДС) + 1) (1.8)

Теперь получим СуммаСНДС из СумміБезНДС:
СуммаСНДС = СуммаБезНДС + СуммаБезНДС * СтакваНДС (1.9)

винесем за скобки СуммаБезНДС:
СуммаСНДС = СуммаБезНДС * (1 + СтакваНДС) (1.10)

1.2. Итоговые формулы

СуммаБезНДС:

СуммаБезНДС = СуммаСНДС / (1 + СтакваНДС) СуммаБезНДС

СуммаБезНДС = НДС / СтавкаНДС СуммаБезНДС

СуммаНДС:

НДС = СуммаБезСНДС * СтакваНДС СуммаНДС

НДС = СуммаСНДС / (1 / СтавкаНДС) + 1) СуммаНДС

СуммаСНДС:

СуммаСНДС = СуммаБезНДС * (1 + СтакваНДС) СуммаСНДС

СуммаСНДС = НДС * ((1 / СтавкаНДС) + 1) СуммаСНДС

2. Расчет процентов

2.1. Простой процент

2.2. Сложный процент

3. Системы счислений


3.1. Что такое система счисления?

Система счисления — это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7•102 + 5•101 + 7•100 + 7•10-1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления — это количество различных знаков или символов, используемых для изображения цифр в данной системе.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

an-1 qn-1 + an-2 qn-2+ ... + a1 q1 + a0 q0 + a-1 q-1 + ... + a-m q-m,

где ai – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

Например:

3.2. Как порождаются целые числа в позиционных системах счисления?

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвижением цифры называют замену её следующей по величине.

Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры – 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 – замену её на 0.

Целые числа в любой системе счисления порождаются с помощью Правила счета:

Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.

Применяя это правило, запишем первые десять целых чисел

  • в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001;
  • в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100;
  • в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14;
  • восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.

3.3. Какие системы счисления используют специалисты для общения с компьютером?

Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно:

  • двоичная (используются цифры 0, 1);
  • восьмеричная (используются цифры 0, 1, ..., 7);
  • шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел — от десяти до пятнадцати – в качестве цифр используются символы A, B, C, D, E, F).

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:
10 - я 2 - я 8 - я 16 - я
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 - я 2 - я 8 - я 16 - я
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления.

3.4. Почему люди пользуются десятичной системой, а компьютеры — двоичной?

Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, а пальцев у людей по десять на руках и ногах. Не всегда и не везде люди пользуются десятичной системой счисления. В Китае, например, долгое время пользовались пятеричной системой счисления.

А компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами:

  • для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.), а не, например, с десятью, — как в десятичной;
  • представление информации посредством только двух состояний надежно и помехоустойчиво;
  • возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;
  • двоичная арифметика намного проще десятичной.

Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел.

3.5. Почему в компьютерах используются также восьмеричная и шестнадцатеричная системы счисления?

Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи.

Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.

Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 – соответственно, третья и четвертая степени числа 2).

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

Например:

Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответ-ствующей восьмеричной (шестнадцатеричной) цифрой.

Например,

3.6. Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается как последо-вательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 7510 = 1 001 0112 = 1138 = 4B16.

3.7. Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?

Пpи переводе правильной десятичной дpоби в систему счисления с основанием q необходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательно умножать на q, отделяя после каждого умножения целую часть пpоизведения. Число в новой системе счисления записывается как последовательность полученных целых частей пpоизведения.

Умножение пpоизводится до тех поp, пока дpобная часть пpоизведения не станет pавной нулю. Это значит, что сделан точный пеpевод. В пpотивном случае пеpевод осуществляется до заданной точности. Достаточно того количества цифp в pезультате, котоpое поместится в ячейку.

Пример: Перевести число 0,35 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 0,3510 = 0,010112 = 0,2638 = 0,5916 .

3.8. Как пеpевести число из двоичной (восьмеpичной, шестнадцатеpичной) системы в десятичную?

При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

Примеpы:

3.9. Сводная таблица переводов целых чисел из одной системы счисления в другую

Рассмотрим только те системы счисления, которые применяются в компьютерах — десятичную, двоичную, восьмеричную и шестнадцатеричную.

Для определенности возьмем произвольное десятичное число, например 46, и для него выполним все возможные последовательные переводы из одной системы счисления в другую.

Порядок переводов определим в соответствии с рисунком:

На этом рисунке использованы следующие обозначения:

  • в кружках записаны основания систем счисления;
  • стрелки указывают направление перевода;
  • номер рядом со стрелкой означает порядковый номер соответствующего примера в сводной таблице 4.1.

Например: означает перевод из двоичной системы в шестнадцатеричную, имеющий в таблице порядковый номер 6.

Сводная таблица переводов целых чисел
Таблица 4.1.

3.10. Как производятся арифметические операции в позиционных системах счисления?

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

Сложение

Таблицы сложения легко составить, используя Правило Счета.

Сложение в двоичной системе

Сложение в восьмеричной системе

Сложение в шестнадцатиричной системе

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления.

Шестнадцатеричная: F16+616

 

Ответ: 15+6 = 2110 = 101012 = 258 = 1516.

Проверка. Преобразуем полученные суммы к десятичному виду:
101012 = 24 + 22 + 20 = 16+4+1=21,
258 = 2*81 + 5*80 = 16 + 5 = 21,
1516 = 1*161 + 5*160 = 16+5 = 21.

Пример 2. Сложим числа 15, 7 и 3.


Шестнадцатеричная: F16+716+316

 

Ответ: 5+7+3 = 2510 = 110012 = 318 = 1916.

Проверка:
110012 = 24 + 23 + 20 = 16+8+1=25,
318 = 3*81 + 1*80 = 24 + 1 = 25,
1916 = 1*161 + 9*160 = 16+9 = 25.

 

Пример 3. Сложим числа 141,5 и 59,75.

Ответ: 141,5 + 59,75 = 201,2510 = 11001001,012 = 311,28 = C9,416

Проверка. Преобразуем полученные суммы к десятичному виду:
11001001,012 = 27 + 26 + 23 + 20 + 2-2 = 201,25
311,28 = 3*82 + 1•81 + 1*80 + 2*8-1 = 201,25
C9,416 = 12*161 + 9*160 + 4*16-1 = 201,25

Вычитание

Пример 4. Вычтем единицу из чисел 102, 108 и 1016

Пример 5. Вычтем единицу из чисел 1002, 1008 и 10016.

Пример 6. Вычтем число 59,75 из числа 201,25.

Ответ: 201,2510 – 59,7510 = 141,510 = 10001101,12 = 215,48 = 8D,816.

Проверка. Преобразуем полученные разности к десятичному виду:
10001101,12 = 27 + 23 + 22 + 20 + 2–1 = 141,5;
215,48 = 2*82 + 1*81 + 5*80 + 4*8–1 = 141,5;
8D,816 = 8*161 + D*160 + 8*16–1 = 141,5.

Умножение

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе

Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример 7. Перемножим числа 5 и 6.

Ответ: 5*6 = 3010 = 111102 = 368.

Проверка. Преобразуем полученные произведения к десятичному виду:
111102 = 24 + 23 + 22 + 21 = 30;
368 = 3•81 + 6•80 = 30.

Пример 8. Перемножим числа 115 и 51.

Ответ: 115*51 = 586510 = 10110111010012 = 133518.

Проверка. Преобразуем полученные произведения к десятичному виду:
10110111010012 = 212 + 210 + 29 + 27 + 26 + 25 + 23 + 20 = 5865;
133518 = 1*84 + 3*83 + 3*82 + 5*81 + 1*80 = 5865.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Пример 9. Разделим число 30 на число 6.

Ответ: 30 : 6 = 510 = 1012 = 58.

Пример 10. Разделим число 5865 на число 115.

Восьмеричная: 133518 :1638

Ответ: 5865 : 115 = 5110 = 1100112 = 638.

Проверка. Преобразуем полученные частные к десятичному виду:
1100112 = 25 + 24 + 21 + 20 = 51; 638 = 6*81 + 3*80 = 51.

Пример 11. Разделим число 35 на число 14.

Восьмеричная: 438 : 168

Ответ: 35 : 14 = 2,510 = 10,12 = 2,48.

Проверка. Преобразуем полученные частные к десятичному виду:
10,12 = 21 + 2 -1 = 2,5;
2,48 = 2*80 + 4*8-1 = 2,5.

3.11. Как представляются в компьютере целые числа?

Целые числа могут представляться в компьютере со знаком или без знака.

Целые числа без знака обычно занимают в памяти один или два байта и принимают в однобайтовом формате значения от 000000002 до 111111112 , а в двубайтовом формате — от 00000000 000000002 до 11111111 111111112.

Диапазоны значений целых чисел без знака
Формат числа в байтах Диапазон
Запись с порядком Обычная запись
1 0 ... 28–1 0 ... 255
2 0 ... 216–1 0 ... 65535

Примеры:

а) число 7210 = 10010002 в однобайтовом формате:

б) это же число в двубайтовом формате:

в) число 65535 в двубайтовом формате:

Целые числа со знаком обычно занимают в памяти компьютера один, два или четыре байта, при этом самый левый (старший) разряд содержит информацию о знаке числа. Знак “плюс” кодируется нулем, а “минус” — единицей.

Диапазоны значений целых чисел со знаком
Формат числа в байтах Диапазон
Запись с порядком Обычная запись
1 –27 ... 27–1 –128 ... 127
2 –215 ... 215–1 –32768 ... 32767
4 –231 ... 231–1 –2147483648 ... 2147483647

Рассмотрим особенности записи целых чисел со знаком на примере однобайтового формата, при котором для знака отводится один разряд, а для цифр абсолютной величины – семь разрядов.

В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: прямой код, обратный код, дополнительный код.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cложения.

Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково — двоичными кодами с цифрой 0 в знаковом разряде. Например:

Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.

1. Прямой код. В знаковый разряд помещается цифра 1, а в разряды цифровой части числа — двоичный код его абсолютной величины. Например:

2. Обратный код. Получается инвертированием всех цифр двоичного кода абсолютной величины числа, включая разряд знака: нули заменяются единицами, а единицы — нулями. Например:

3. Дополнительный код. Получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду. Например:

Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.

3.12. Как компьютер выполняет арифметические действия над целыми числами?

Сложение и вычитание

В большинстве компьютеров операция вычитания не используется. Вместо нее производится сложение уменьшаемого с обратным или дополнительным кодом вычитаемого. Это позволяет существенно упростить конструкцию АЛУ.

При сложении обратных кодов чисел А и В имеют место четыре основных и два особых случая:

1. А и В положительные. При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю. Например:

Получен правильный результат.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

Получен правильный результат в обратном коде. При переводе в прямой код биты цифровой части результата инвертируются: 1 0000111 = –710.

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицы из знакового разряда в младший разряд суммы.

4. А и В отрицательные. Например:

Полученный первоначально неправильный результат (обратный код числа –1110 вместо обратного кода числа –1010) компьютер исправляет переносом единицы из знакового разряда в младший разряд суммы.

При переводе результата в прямой код биты цифровой части числа инвертируются: 1 0001010 = –1010.

При сложении может возникнуть ситуация, когда старшие разряды результата операции не помещаются в отведенной для него области памяти. Такая ситуация называется переполнением разрядной сетки формата числа. Для обнаружения переполнения и оповещения о возникшей ошибке в компьютере используются специальные средства. Ниже приведены два возможных случая переполнения.

5. А и В положительные, сумма А+В больше, либо равна 2n–1, где n – количество разрядов формата чисел (для однобайтового формата n=8, 2n–1 = 27 = 128). Например:

Семи разрядов цифровой части числового формата недостаточно для размещения восьмиразрядной суммы (16210 = 101000102), поэтому старший разряд суммы оказывается в знаковом разряде. Это вызывает несовпадение знака суммы и знаков слагаемых, что является свидетельством переполнения разрядной сетки.

6. А и В отрицательные, сумма абсолютных величин А и В больше, либо равна 2n–1. Например:

Здесь знак суммы тоже не совпадает со знаками слагаемых, что свидетельствует о переполнении разрядной сетки.

Все эти случаи имеют место и при сложении дополнительных кодов чисел:

1. А и В положительные. Здесь нет отличий от случая 1, рассмотренного для обратного кода.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

Получен правильный результат в дополнительном коде. При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется единица: 1 0000110 + 1 = 1 0000111 = –710.

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

Получен правильный результат. Единицу переноса из знакового разряда компьютер отбрасывает.

4. А и В отрицательные. Например:

Получен правильный результат в дополнительном коде. Единицу переноса из знакового разряда компьютер отбрасывает.

Случаи переполнения для дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

Сравнение рассмотренных форм кодирования целых чисел со знаком показывает:

  • на преобразование отрицательного числа в обратный код компьютер затрачивает меньше времени, чем на преобразование в дополнительный код, так как последнее состоит из двух шагов — образования обратного кода и прибавления единицы к его младшему разряду;
  • время выполнения сложения для дополнительных кодов чисел меньше, чем для их обратных кодов, потому что в таком сложении нет переноса единицы из знакового разряда в младший разряд результата.

Умножение и деление

Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль. В процессе выполнения операции в нем поочередно размещаются множимое и результаты промежуточных сложений, а по завершении операции — окончательный результат.

Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения.

Для иллюстрации умножим 1100112 на 1011012.

Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.

3.13. Как представляются в компьютере вещественные числа?

Вещественными числами (в отличие от целых) в компьютерной технике называются числа, имеющие дробную часть.

При их написании вместо запятой принято писать точку. Так, например, число 5 — целое, а числа 5.1 и 5.0 — вещественные.

Для удобства отображения чисел, принимающих значения из достаточно широкого диапазона (то есть, как очень маленьких, так и очень больших), используется форма записи чисел с порядком основания системы счисления. Например, десятичное число 1.25 можно в этой форме представить так:

1.25*100 = 0.125*101 = 0.0125*102 = ... ,

или так:

12.5*10–1 = 125.0*10–2 = 1250.0*10–3 = ... .

Любое число N в системе счисления с основанием q можно записать в виде N = M * qp, где M называется мантиссой числа, а pпорядком. Такой способ записи чисел называется представлением с плавающей точкой.

Если “плавающая” точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине. Из этого следует:

Мантисса должна быть правильной дробью, первая цифра которой отлична от нуля: M из [0.1, 1).

Такое, наиболее выгодное для компьютера, представление вещественных чисел называется нормализованным.

Мантиссу и порядок q-ичного числа принято записывать в системе с основанием q, а само основание — в десятичной системе.

Примеры нормализованного представления:

Десятичная система                 Двоичная система

753.15 = 0.75315*103;          -101.01 = -0.10101*211 (порядок 112 = 310)

-0.000034 = -0.34*10-4;         -0.000011 = 0.11*2-100 (порядок -1002 = -410)

Вещественные числа в компьютерах различных типов записываются по-разному. При этом компьютер обычно предоставляет программисту возможность выбора из нескольких числовых форматов наиболее подходящего для конкретной задачи — с использованием четырех, шести, восьми или десяти байтов.

В качестве примера приведем характеристики форматов вещественных чисел, используемых IBM-совместимыми персональными компьютерами:
Форматы вещественных чисел Размер в байтах Примерный диапазон абсолютных значений Количество значащих десятичных цифр
Одинарный 4 10–45 … 1038 7 или 8
Вещественный 6 10–39 … 1038 11 или 12
Двойной 8 10–324 … 10308 15 или 16
Расширенный 10 10–4932 … 104932 19 или 20

Из этой таблицы видно, что форма представления чисел с плавающей точкой позволяет записывать числа с высокой точностью и из весьма широкого диапазона.

При хранении числа с плавающей точкой отводятся разряды для мантиссы, порядка, знака числа и знака порядка:

· Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа.

· Чем больше разрядов занимает порядок, тем шире диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в машине при заданном формате.

Покажем на примерах, как записываются некоторые числа в нормализованном виде в четырехбайтовом формате с семью разрядами для записи порядка.

1. Число 6.2510 = 110.012 = 0,11001•211 :

2. Число –0.12510 = –0.0012 = –0.1*2–10 (отрицательный порядок записан в дополнительном коде):

3.14. Как компьютер выполняет арифметические действия над нормализованными числами?

К началу выполнения арифметического действия операнды операции помещаются в соответствующие регистры АЛУ.

Сложение и вычитание

При сложении и вычитании сначала производится подготовительная операция, называемая выравниванием порядков.

В процессе выравнивания порядков мантисса числа с меньшим порядком сдвигается в своем регистре вправо на количество разрядов, равное разности порядков операндов. После каждого сдвига порядок увеличивается на единицу.

В результате выравнивания порядков одноименные разряды чисел оказываются расположенными в соответствующих разрядах обоих регистров, после чего мантиссы складываются или вычитаются.

В случае необходимости полученный результат нормализуется путем сдвига мантиссы результата влево. После каждого сдвига влево порядок результата уменьшается на единицу.

Пример 1. Сложить двоичные нормализованные числа 0.10111•2–1 и 0.11011*210. Разность порядков слагаемых здесь равна трем, поэтому перед сложением мантисса первого числа сдвигается на три разряда вправо:

Пример 2. Выполнить вычитание двоичных нормализованных чисел 0.10101*210 и 0.11101*21. Разность порядков уменьшаемого и вычитаемого здесь равна единице, поэтому перед вычитанием мантисса второго числа сдвигается на один разряд вправо:

Результат получился не нормализованным, поэтому его мантисса сдвигается влево на два разряда с соответствующим уменьшением порядка на две единицы: 0.1101*20.

Умножение

При умножении двух нормализованных чисел их порядки складываются, а мантиссы перемножаются.

Пример 3. Выполнить умножение двоичных нормализованных чисел:

(0.11101*2101)*(0.1001*211) = (0.11101*0.1001)* 2(101+11) = 0.100000101*21000.

Деление

При делении двух нормализованных чисел из порядка делимого вычитается порядок делителя, а мантисса делимого делится на мантиссу делителя. Затем в случае необходимости полученный результат нормализуется.

Пример 4. Выполнить деление двоичных нормализованных чисел:

0.1111*2100 : 0.101*211 = (0.1111 : 0.101) * 2(100–11) = 1.1*21 = 0.11•210.

Использование представления чисел с плавающей точкой существенно усложняет схему арифметико-логического устройства.